数学知识点总结【精彩4篇】

时间:2023-04-20 16:51:28 | 文章来源:职结果

小学数学应该多看一些小学数学书籍并做好相应的书籍读后感。那么你知道数学书籍读后感怎么写吗?它山之石可以攻玉,下面虎知道为您精心整理了4篇《数学知识点总结》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

数学知识点总结 篇一

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

①异面直线定义:不同在任何一个平面内的两条直线

②异面直线性质:既不平行,又不相交。

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点。

三种位置关系的符号表示:aαa∩α=Aa‖α

(9)平面与平面之间的位置关系:平行——没有公共点;α‖β

相交——有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为。

②平面的垂线与平面所成的角:规定为。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:

(1)斜线上一点到面的垂线;

(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

数学的学习方法

1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

3、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

高中数学知识点有哪些

1、混淆命题的否定与否命题

命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

2、忽视集合元素的三性致误

集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

3、判断函数奇偶性忽略定义域致误

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

4、函数零点定理使用不当致误

如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。

5、函数的单调区间理解不准致误

在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

6、三角函数的单调性判断致误

对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。

7、向量夹角范围不清致误

解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。

8、忽视零向量致误

零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

9、对数列的定义、性质理解错误

等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m—Sm,S3m—S2m(m∈Nx)是等差数列。

10、an与Sn关系不清致误

在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn—Sn—1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。

11、错位相减求和项处理不当致误

错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n—1项和为主的求和问题。这里最容易出现问题的就是错位相减后对剩余项的处理。

12、不等式性质应用不当致误

在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。

13、数列中的最值错误

数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。

14、不等式恒成立问题致误

解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法。通过最值产生结论。应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系。

15、忽视三视图中的实、虚线致误

三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽。

16、面积体积计算转化不灵活致误

面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型。因此要熟练掌握以下几种常用的思想方法。

(1)还台为锥的思想:这是处理台体时常用的思想方法。

(2)割补法:求不规则图形面积或几何体体积时常用。

(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积。

(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解。

17、忽视基本不等式应用条件致误

利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。

数学知识点总结 篇二

1、点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2、角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理:

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

正方形:一组邻边相等的矩形是正方形

性质:正方形具有平行四边形、菱形、矩形的一切性质

判定:1、对角线相等的菱形2、邻边相等的矩形

数学知识点总结 篇三

一、认知离散数学

离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。

1.定义和定理多

离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。掌握和理解这些概念对于学好离散数学是至关重要的。

2. 方法性强

在离散数学的学习过程中,一定要注重和掌握离散数学处理问题的方法,在做题时,找到一个合适的解题思路和方法是极为重要的。如果知道了一道题用怎样的方法去做或证明,就能很容易地做或证出来。反之,则事倍功半。在离散数学中,虽然各种各样的题种类繁多,但每类题的解法均有规律可循。所以在听课和平时的复习中,要善于总结和归纳具有规律性的内容。在平时的讲课和复习中,老师会总结各类解题思路和方法。作为学生,首先应该熟悉并且会用这些方法,同时,还要勤于思考,对于一道题,进可能地多探讨几种解法。

3. 抽象性强

离散数学的特点是知识点集中,对抽象思维能力的要求较高。由于这些定义的抽象性,使初学者往往不能在脑海中直接建立起它们与现实世界中客观事物的联系。不管是哪本离散数学教材,都会在每一章中首先列出若干个定义和定理,接着就是这些定义和定理的直接应用,如果没有较好的抽象思维能力,学习离散数学确实具有一定的困难。因此,在离散数学的学习中,要注重抽象思维能力、逻辑推理能力的培养和训练,这种能力的培养对今后从事各种工作都是极其重要的。

在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。

4. 内在联系性

离散数学的三大体系虽然来自于不同的学科,但是这三大体系前后贯通,形成一个有机的整体。通过认真的分析可寻找出三大部分之间知识的内在联系性和规律性。如:集合论、函数、关系和图论,其解题思路和证明方法均有相同或相似之处。

如何应对考试:一般来说,离散数学的考试要求分为了解、理解和掌握。了解是能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。为了考核学生对这三部分的理解和掌握的程度,试题类型一般可分为:判断题、填空题、选择题、计算题和证明题。判断题、填空题、选择题主要涉及基本概念、基本理论、重要性质和结论、公式及其简单计算;计算题主要考核学生的基本运用技能和速度,要求写出完整的计算过程和步骤;证明题主要考查应用概念、性质、定理及重要结论进行逻辑推理的能力,要求写出严格的推理和论证过程。

学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过程或证明准确无误。一个好的解题过程或证明应该是条理清楚、论据充分、表述简洁的。针对这一要求,在讲课中老师会提供大量的典型例题供同学们参考和学习。

通过离散数学的学习和训练,能使同学们学会在离散数学中处理问题的一般性的规律和方法,一旦掌握了离散数学中这种处理问题的思想方法,学习和掌握离散数学的知识就不再是一件难事了。

首先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算 科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既 然如此,在学习《离散数学》时,大家最应该牢记的是唐诗“熟读唐诗三百首,不会做诗也会吟。”学习过程是一个扎扎实实积累的过程,不能打马虎眼。离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。

《离散数学》的特点是:

1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离 散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多 探讨几种证明方法,从而学会熟练运用这些证明方法。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),初学者往往不能在脑海中 建立起它们与现实世界中客观事物的联系。这往往是《离散数学》学习过程中初学者要面临的第一个困难,他们觉得不容易进入学习的状态。因此一开始必须准确、 全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能 够适应,并为后续学习打下良好的基础。

数学知识点总结 篇四

1、高一数学知识点总结:集合一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大

括号内表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一数学知识点总结:集合间的基本关系

1.“包含”关系—子集

注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:

①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。

3、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。

(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N;

在自然数集内排除0的集合叫做正整数集,记作N+或N;

整数全体构成的集合,叫做整数集,记作Z;

有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理)虎知道○www.huzhidao.com(数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

以上内容就是虎知道为您提供的4篇《数学知识点总结》,希望对您有一些参考价值。