初一数学下册基本知识点总结(通用5篇)

时间:2023-04-22 16:59:43 | 文章来源:职结果

学习,是每个学生每天都在做的事情,学生们从学习中获得大量的知识,虎知道的小编精心为您带来了5篇《初一数学下册基本知识点总结》,希望能对您的写作有一定的参考作用。

怎样学好初中数学 篇一

(一)学好初中数学需要养成阅读课本的习惯

前苏联数学教育家斯托利亚尔言:“数学教学也就是数学语言的教学”。数学语言精练、语句严谨;所以只有做到对每个句子、每个概念、每个图表都应细致地阅读分析,领会其内容、含义。才能体会到其中的数学思想方法,并能正确依据数学原理分析它们之间的逻辑关系,达到对材料的真正理解,形成知识结构。

(二)学好初中数学需要培养“想要听、听得懂、懂得听”的习惯

要做到想要听,就得明白学习数学的意义:在多年的数学学习中,数学真理的绝对性,数学结论的可靠性,数学演算的精确性,数学思维的严密性,点点滴滴地渗入到我们的思想,这些将在我们日后的人生历程中起着重要的作用。要达到听得懂,就必须提前预习,保持专注;要做到懂得听就是明白听课重点。

(三)学好初中数学需要养成良好的作业习惯

做作业前先要复习巩固所学的概念、定理和性质,联想老师所讲过的经典例题。做题时一要看题准确,即文字、数学式子、数学符号等不多看、少看或漏看;二要分得清楚,即能分清题目的条件、结论。由题联想到它考查的知识点。

初一下册数学复习资料 篇二

概念知识

1、单项式:数字与字母的积,叫做单项式。

2、多项式:几个单项式的和,叫做多项式。

3、整式:单项式和多项式统称整式。

4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

6、余角:两个角的和为90度,这两个角叫做互为余角。

7、补角:两个角的和为180度,这两个角叫做互为补角。

8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

18、全等图形:两个能够重合的图形称为全等图形。

19、变量:变化的数量,就叫变量。

20、自变量:在变化的量中主动发生变化的,变叫自变量。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形

叫做轴对称图形。

初一年级下册数学知识点浙教版 篇三

平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标 0;②x轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点P(2,3) 到x轴的距离是 ; 到y轴的距离是 ; 点P(2,3) 关于x轴对称的点坐标为( , );点P(2,3) 关于y轴对称的点坐标为( , )。

新人教版初一下册数学知识点总结归纳 篇四

平行线与相交线

一、互余、互补、对顶角

1、相加等于90°的两个角称这两个角互余。 性质:同角(或等角)的余角相等。

2、相加等于180°的两个角称这两个角互补。 性质:同角(或等角)的补角相等。

3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。 对顶角的性质:对顶角相等。

4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。 (相邻且互补)

二、三线八角: 两直线被第三条直线所截

①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。

②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。

③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。

三、平行线的判定

①同位角相等

②内错角相等 两直线平行

③同旁内角互补

四、平行线的性质

①两直线平行,同位角相等。 ②两直线平行,内错角相等。 ③两直线平行,同旁内角互补。

五、尺规作图(用圆规和直尺作图)

①作一条线段等于已知线段。 ②作一个角等于已知角。

生活中的轴对称

一、轴对称图形与轴对称

①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。

②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。

③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形

二、角平分线的性质:角平分线上的点到角两边的距离相等。

∵ ∠1=∠2 PB⊥OB PA⊥OA

∴ PB=PA

三、线段垂直平分线:

①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。

②性质:线段垂直平分线上的点到线段两个端点的距离相等。

∵ OA=OB CD⊥AB

∴ PA=PB

四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)

①等腰三角形是轴对称图形; (一条对称轴)

②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一)

③等腰三角形的两个底角相等。 (简称:等边对等角)

五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边)

六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。

① 等边三角形的三条边相等,三个角都等于60; ②等边三角形有三条对称轴。

七、轴对称的性质:

① 关于某条直线对称的两个图形是全等形; ②对应线段、对应角相等;

② 对应点的连线被对称轴垂直且平分; ④对应线段如果相交,那么交点在对称轴上。

八、镜子改变了什么:

1、物与像关于镜面成轴对称;(分清左右对称与上下对称)

2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题

三角形

一、认识三角形

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。

2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。

(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)

3、三角形的内角和是180°;直角三角形的两锐角互余。

锐角三角形 (三个角都是锐角)

4、三角形按角分类直角三角形 (有一个角是直角)

钝角三角形 (有一个角是钝角)

5、三角形的特殊线段:

a) 三角形的中线:连结顶点与对边中点的线段。 (分成的两个三角形面积相等)

b) 三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。

c) 三角形的高:顶点到对边的垂线段。 (每一种三角形的作图)

二、全等三角形:

1、全等三角形:能够重合的两个三角形。

2、全等三角形的性质:全等三角形的对应边、对应角相等。

3、全等三角形的判定:

判定方法

内 容

简称

边边边

三边对应相等的两个三角形全等

SSS

边角边

两边与这两边的夹角对应相等的两个三角形全等

SAS

角边角

两角与这两角的夹边对应相等的两个三角形全等

ASA

角角边

两角与其中一个角的对边对应相等的两个三角形全等

AAS

斜边直角边

斜边与一条直角边对应相等的两个直角三角形全等

HL

注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA

两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等。SSA

4、全等三角形的证明思路:

条 件

下一步的思路

运用的判定方法

已经两边对应相等

找它们的夹角

SAS

找第三边

SSS

已经两角对应相等

找它们的夹边

ASA

找其中一个角的对边

AAS

已经一角一边

找另一个角

ASA或AAS

找另一边

SAS

5、三角形具有稳定性,

三、作三角形

1、已经三边作三角形

2、已经两边与它们的夹角作三角形

3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)

4、已经斜边与一条直角边作直角三角形

初中数学七年级下册知识点总结 篇五

第一章整式的运算

一、整式

※1、单项式

①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。

③一个单项式中,所有字母的指数和叫做这个单项式的次数。

※2、多项式

①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。

②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。

※3、整式单项式和多项式统称为整式。

二、整式的加减

¤1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。

¤2、括号前面是"-"号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

三、同底数幂的乘法

※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的`乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

⑤公式还可以逆用:(m、n均为正整数)

四、幂的乘方与积的乘方

※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

※2、底数有负号时,运算时要注意,底数是a与(—a)时不是同底,但可以利用乘方法则化成同底,如将(—a)3化成—a3。

以上就是虎知道为大家整理的5篇《初一数学下册基本知识点总结》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在虎知道。