初一下学期数学教学计划优秀4篇

时间:2023-04-23 08:37:56 | 文章来源:职结果

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以帮助我们总结以往思想,发扬成绩,不妨坐下来好好写写总结吧。那么如何把总结写出新花样呢?这次帅气的小编为您整理了4篇《初一下学期数学教学计划》,如果对您有一些参考与帮助,请分享给最好的朋友。

初一数学下教案 篇一

教学设计

1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)

2、知道事件发生的可能性是有大小的(难点)

一、情境导入

在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?

二、合作探究

探究点一:必然事件、不可能事件和随机事件

【类型一】必然事件

一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()

A、摸出的4个球中至少有一个是白球

B、摸出的4个球中至少有一个是黑球

C、摸出的4个球中至少有两个是黑球

D、摸出的4个球中至少有两个是白球

解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件、故选B、

方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件)、若是不确定的,则该事件是不确定事件、

变式训练:见《学练优》本课时练习“课堂达标训练”第1题

【类型二】不可能事件

下列事件中不可能发生的是()

A、打开电视机,中央一台正在播放新闻

B、我们班的同学将来会有人当选为劳动模范

C、在空气中,光的传播速度比声音的传播速度快

D、太阳从西边升起

解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选D、

变式训练:见《学练优》本课时练习“课堂达标训练”第2题

【类型三】随机事件

下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°、其中是随机事件的是________(填序号)、

解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件、故答案是①③、

变式训练:见《学练优》本课时练习“课堂达标训练”第6题

探究点二:随机事件发生的可能性

掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()

A、一定是6

B、是6的可能性大于是1~5中的任意一个数的可能性

C、一定不是6

D、是6的可能性等于是1~5中的任意一个数的可能性

解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数、要求可能性的大小,只需求出各自所占的比例大小即可、第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B错,D对、故选D、

方法总结:不确定事件的可能性有大有小、骰子在掷的过程中,每个点数出现的可能性是一样的

变式训练:见《学练优》本课时练习“课堂达标训练”第11题

三、板书设计

1、必然事件、不可能事件和随机事件

必然事件:一定会发生的事件;

不可能事件:一定不会发生的事件;

必然事件和不可能事件统称为确定事件;

随机事件:无法事先确定一次试验中会不会发生的事件、

2、随机事件发生的可能性

教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。

《6、1感受可能性》课时练习

一、选择题(共15个小题)

1、下列说法正确的是()

A、随机事件发生的可能性是50%

B、确定事件发生的可能性是1

C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本

D、确定事件发生的可能性是0或1

答案:D

解析:解答:对于A,随机事件发生的可能性大于0,而小于100%,是在一个范围之内,并不是一个确定的数值;对于B,确定事件,包括发生的可能性是0或1;对于C,应该是从中抽取10名学生的中考数学成绩作为一个样本;D是在B的基础上完整叙述,正确、故选D、

分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、

6、1感受可能性同步练习

一、选择——基础知识运用

1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()

A、摸出的是3个白球

B、摸出的是3个黑球

C、摸出的是2个白球、1个黑球

D、摸出的是2个黑球、1个白球

2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()

A、不确定事件B、不可能事件

C、可能性大的事件D、必然事件

3、下列事件是必然事件的是()

A、打开电视机正在播放广告

B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次

C、任意一个一元二次方程都有实数根

D、在平面上任意画一个三角形,其内角和是180°

初一下学期数学教学工作计划 篇二

一、学生情况分析

本期担任七年级数学,该班共有学生46人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

二、教材及课标分析

第一章《有理数》

1、本章的主要内容:

对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理

数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

重点:有理数加、减、乘、除、乘方运算

难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。

2、本章的地位及作用:

本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建"数学大厦"的地基。

3、本章涉及到的主要数学思想及方法:

a、分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。

b、数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。

c、化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。

d、类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。在学习过程中要时时考虑符号问题。用类比的方法去学习会对新知识有"似曾相识"之感,不会觉得陌生,学起来自然会轻松的多。

4、教法建议

a、在学完数轴一节课后,把利用数轴比较有理数的大小补充进来,提前讲解,在讲完绝对值后,在利用绝对值比较两个负数的大小,这样做既可以体会到数轴的用途,也可以避免两种方法放在一起给学生造成的混乱,而利用绝对值比较有理数的大小,写法上学生一般情况下掌握不好,这样可以着重训练学生的写法,分散难点。

b、注重联系实际:这本教材的编排更注重了知识来源于生活,反过来又应用到生活中去的思想。充分体现了生活中处处有数学,人人都学有用的数学的理念。因此,在每课的"创设情境"这一环节中,要充分注意这一点,充分利用生活实例引入新知识,使学生充分体现到学好数学是有用的,因而提高学生学习数学的兴趣。

c、对于绝对值一课的教法建议:对于绝对值的代数意义的理解,学生往往感到困难,教者可以告诉学生:两棍中间夹着一个人(整体),当它是正数和零时,两棍一扒拉,直接走出来,当它是负数时,两棍一扒拉,拄着拐棍走出来,比较形象,使学生容易理解,在《整式的加减》一章中,才可以顺利去掉绝对值符号,进行化简。

d、注重本章的选学内容:一个是第6页的"用正负数表示加工允许误差",另一个是第40页的"翻牌游戏中的数学定到理"

第二章《整式的加减》

1、本章的主要内容:

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。

重点:去括号,合并同类项。

难点:对单项式系数,次数,多项式次数的理解与应用。

2、本章的地位及作用:

整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

3、本章涉及到的主要数学思想及方法:

a、整体数思想:主要体现在式子的化简求值问题中,有些题目采用整体代人的解题策略,可使计算简便。有些题目只有从整体考虑才能解决问题。例如:已知:a-b=-3,cd=2,求(bc)-(a-d)的值

b、从"特殊到一般",又从"一般到特殊"的数学思想:这主要体现在本章的习题中,都是根据实际问题列出式子,然后再根据具体数值求式子的值中。

c、对比思想:本章出现了单项式,多项式,同类项等概念,为了正确掌握这些概念,可在比较辨析中加深对概念的理解。

4、教法建议(仅供参考)

a、在讲多项式一节的内容中,增加多项式的升(降)幂排列的内容,为下一节对合并同类项的结果的整理提前做好准备。

b、注重本章的数学活动:第43页的数学活动,我认为很有价值,有一定的趣味性,也有较强的探索性,对于学生思维逻辑性的培养是很有价值的,应给予学生充分的时间进行学习。

c、本章概念较多,应使学生首先牢记概念,在解决问题时,才能有意识地联系这些概念,以此为依据完成相关题目。

d、在求多项式的值的相关题目中,注意解题格式的要求,学生初次接触,往往不注意解题格式的写法。

第三章《一元一次方程》

1、本章的主要内容:

列方程,一元一次方程的概念及解法,列一元一次方程解应用题。

重点:列方程,一元一次方程的解法,

难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。

2、本章的地位及作用:

一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想--方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。

3、本章涉及到的主要数学思想及方法:

a、转化思想:主要体现在利用方程的同解原理,将复杂的方程转化为简单的方程,直至求出它的解。

b、整体思想:例如:解方程3/2(31)-1/2(31)=5运用整体思想可以使解题步骤简捷,思路清晰。

c、数学建模思想:它是在对问题深入地思考、分析、抽象的基础上,用数学方法去解决实际问题,建立数学模型。方程是刻画现实世界的一个有效的数学模型。本章中的列方程解应用题就是培养学生的数学建模思想。

d、数形结合思想:这主要体现在列方程解应用题时,尤其是对行程问题的分析解决中。

4、教法建议(仅供参考)

a、本册教材为了更好地体现数学与生活的联系,在讲一元一次方程的解法时,都是先通过一道生活实际问题引入的,然后探讨方程的解法,我的建议是,对于引例的讲解,可以先用算术法,大部分学生习惯这种解法,再引导学生用方程的方法,从而使学生逐步认识到代数方法的优越性。在列出方程后,引导学生探讨完方程的每一步骤后,熟练了应用这一步骤解方程后,在开始下一步骤的学习。

b、注重几种基本题型的应用题:商品利润问题,储蓄问题,行程问题,行船问题,工程问题,调配问题,比例分配问题,数字问题,等积变形问题。这是一些经典题型。同时注意一些图表型应用题,阅读理解型等新颖的应用题。

c、关注教材第95页的实验与探究:无限循环小数化分数,使学生意识到可以利用一元一次方程的知识将无限循环小数化分数,进一步体会方程的应用。

第四章《图形认识初步》

1、本章的主要内容、地位及作用:

本章主要介绍了多姿多彩的图形(立体图形、平面图形),以及最基本的图形--点、线、角等,并在自主探究的过程中,结合丰富的实例,探索"两点确定一条直线"和"两点间线段最短"的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

2、教学重点与难点

教学重点:(1)角的比较与度量。

(2)余角、补角的概念和性质。

(3)直线、射线、线段和角的概念和性质

教学难点:(1)用几何语言正确表达概念和性质。

(2)空间观念的建立。

3、本章涉及到的主要数学思想及方法:

a、分类讨论思想:本章经常遇到直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题,这时往往需要用分类讨论思想来解决。

b、方程的思想:在涉及线段和角度的计算中,把线段的长度或角的度数设为一个未知数,并根据所求线段或角与与其他线段或角之间的关系列方程求解,能清楚简捷地表示出几何图形中的数量关系,是解决几何计算题的一种重要方法。

c、由特殊到一般的思想:主要体现在依靠图形寻找规律的习题中。

4、教法建议(仅供参考)

a、在讲"几何图形"一节中,注意利用实物和几何模型进行教学,让学生通过认真观察、想象、思考加强对图形的直观认识和感受,从中抽象出几何图形,从而更好地掌握知识。

b、在讲立体图形平面展开图中,我建议让学生准备好粉笔盒等其它实物,亲自动手操作,全班集体归纳总结出正方体的11种平面展开图,培养学生的空间想象能力,锻炼学生不用动手折叠,就能通过观察展开图,想象出立体图形的形状的能力。

c、在讲"直线、射线、线段"一节中,注重培养学生依据几何语言画图的能力,注意补充一部分"根据语句画出图形"的习题。

d、在涉及有关线段角的计算题时,大部分学生不是求不出结果,利用小学学的算术方法往往能给出答案。但不能很好地写出解题过程。因此对于这部分内容要逐步训练学生的简单说理能力。

初一下学期数学教学工作计划 篇三

时间过的飞快,刚刚还在期盼着放寒假,现在寒假就将结束,新的学期就要开始,虽然还没意识到结束假期,但是也必须抖擞精神,做好开学的充分准备。

首先抓紧学校教师集体集合的在这一天半,认真备课,备好开学第一天的课,仔细熟悉教材,和同备课组的老师交流,吸取他们的优秀的教学经验,及时发现自己的不足,并积极改正。

安排好教学任务,本学期时间短,教学任务紧,一共5章的内容,3个多月的时间完成,必须认真安排每一节课,做到课课有实效,不浪费一节课,不耽误一分一秒的时间。由于学校需要这学期我接了三个班的数学课,三个班对于我来说是一种挑战,压力也挺大的,不单单是每周的至少24节课,更重要的是得出效率,不但需要把课上好,成绩也必须有保证,所以无形中压力就更大了。人的精力虽然是有限的,但既然学校需要,我愿意尝试,也会尽力。

带三个班的一切困难都无法预想,但我将从现在开始做好充分的准备,心里准备及各方面的准备。首先要熟悉刚接的班的学生情况,根据期末考试成绩分析哪些学生学的交扎实,哪些学生有待加强,哪些学生有数学偏科需要特别强化,需要个别谈话等,同时让学生尽快了解我,喜欢上我,尽快适应我的课堂,从心里上对数学产生好的看法。

总之,新的学期即将开始,我将以饱满的热情和学生一起创造优异的成绩。

初一数学下教案 篇四

教学目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:

本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:

动手实践

教学过程:

一、 先复习轴对称图形的定义,以及轴对称的相关的性质:

1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

2.轴对称的三个重要性质____________________________________________________________

二、探索练习:

1. 提出问题:

如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。你能画出这个图案的另一半吗?

吸引学生让学生有一种解决难点的想法。

2.分析问题:

分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:

在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:

1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2. 试画出与线段AB关于直线L的线段

3.如上图,已知 直线MN,画出以MN为对称轴 的轴对称图形

小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

导学案:5.4 利用轴对称设计图案

一、学习目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

二、学习重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形。

三、学习难点:掌握有关画图的技能及设计轴对称图形是本节课的难点。

(一)预习准备

(1)预习书128~129页

思考:如何作轴对称图形

(2)预习作业:

补全下列图形,使它成为轴对称图案

(二)学习过程:

轴对称的性质:在轴对称图形中,

(1)对应点所连的线段被对称轴_______。

(2)对应线段_______,对应角_______。

1.下图中给出了图案的一半,虚线是这个图案的对称轴。

(1)你能猜出整个图案的形状吗?

(2)画出它的另一半,证实你的猜想。

2.如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

3.把下列各图补成以L为对称轴的轴对称图形。

以上内容就是虎知道为您提供的4篇《初一下学期数学教学计划》,希望对您有一些参考价值,更多范文样本、模板格式尽在虎知道。

推荐文章: