高一函数知识点总结通用5篇

时间:2023-05-29 17:14:08 | 文章来源:职结果

函数知识要点是高一数学课本中重要的内容。虎知道为朋友们精心整理了5篇《高一函数知识点总结》,希望能对您的写作有一定的参考作用。

函数的值域 篇一

1求函数值域的方法

①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 ∈R的分式;

④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

函数的单调性 篇二

1、函数单调性的定义:

2 设 是定义在M上的函数,若f(x)与g(x)的单调性相反,则 在M上是减函数;若f(x)与g(x)的单调性相同,则 在M上是增函数。

高一函数知识点总结 篇三

函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的集合。

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义。

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象。C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

(2) 画法

A、 描点法:

B、 图象变换法

常用变换方法有三种

1)平移变换

2) 伸缩变换

3) 对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示。

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况。

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二。函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。区间D称为y=f(x)的单调减区间。

注意:函数的单调性是函数的局部性质;

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(3).函数单调区间与单调性的判定方法

(A) 定义法:

○1 任取x1,x2∈D,且x1

○2 作差f(x1)-f(x2);

○3 变形(通常是因式分解和配方);

○4 定号(即判断差f(x1)-f(x2)的正负);

○5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集。

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数。

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。

(2)求函数的解析式的主要方法有:

1) 凑配法

2) 待定系数法

3) 换元法

4) 消参法

10.函数最大(小)值(定义见课本p36页)

○1 利用二次函数的性质(配方法)求函数的最大(小)值

○2 利用图象求函数的最大(小)值

○3 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

.函数的奇偶性 篇四

1.定义: 设y=f(x),x∈A,如果对于任意 ∈A,都有 ,则称y=f(x)为偶函数。

如果对于任意 ∈A,都有 ,则称y=f(x)为奇

函数。

2.性质:

①y=f(x)是偶函数 y=f(x)的图象关于 轴对称, y=f(x)是奇函数 y=f(x)的图象关于原点对称,

②若函数f(x)的定义域关于原点对称,则f(0)=0

③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]

3.奇偶性的判断

①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系

高一函数知识点总结 篇五

高一函数知识点总结

函数先看他的树枝图,第一个点要了解函数定义讲完,讲解函数三要素(定义域、解析式、值域)

接下来讲解函数四性质(单调性、奇偶性、周期性、对称性)

接下来讲解函数类型主要讲解二次函数、指数、对数、幂函数、反函数这些内容讲完后,这个就是函数基础内容。

函数基础内容讲完后,准备了函数专题一:讲解函数零点问题分为了四个题型格外重要,一出题就是高考压轴题

那么第二个专题讲到恒成立问题

第三个专题总结一下函数压轴小题不能常规做,如果常规做,极有可能时间浪费掉正确答案也做不出来,有技巧的,有三个技巧方法非常高效。

第一种题型:三次函数的单调性、极值、最值及其应用,其实这个点,我们在六类不等式提到过。

第二种题型:差异取值验证法在解决函数选择难题中的妙用,全国卷做完百分之八十压轴选择题,除了一点函数题之外,其他章节题目也能用这个思想去做,同学可能或多或少有了解,带着大家把这种方法彻底让你掌握,高效去做压轴选择题

第三种题型:已知函数不等式求解抽象不等式这种题型是构造函数这些内容全部讲完相信你对函数这章体系特别完整,那么后续学习其他章节就不会因为函数这章没有学好而影响后面的学习。

那么开始进入第一个点函数三要素,一个点定义域,给大家讲解三个点

已知解析式型

已知解析式型(四个类型)

根据四个类型讲解例题:

抽象函数型

例题1、已知f(x)的定义域为[3,5],求f(2x-1)的定义域。(解题过程答案如图)

例题2、已知f(2x-1)的定义域为[3,5],求f(x)的定义域

例题3、已知f(2x-1)的定义域为[3,5]求f(4x-1)的定义域

已知定义域求参数范围:

高一数学:如何适应,如何学好?

进入高一以后,数学的深度开始增大,但是,我们都知道,数学是一个多么重要的学科,因此,这个崭新的阶段开始,一定要重视数学的学习。那么,在高一时期,如何尽快适应新内容,掌握新知识呢?

对此,高一的新同学,可以多向学长学姐请教,也可以多咨询老师,当然了,一切都只是引路人,最终还是要靠自己提高悟性,努力学习。

一名高中生,要有最科学的学习方法,才能事半功倍。比如,在数学学习当中,高一同学要能够学会检查和分析,要掌握自己学习的进度,还要愿意动脑思考,愿意积极投入到数学学习中去。如果能够做到以下3点,高一的同学一定能够规避错误,提高数学成绩。

第1点:正确了解高中数学的特点。

高中数学与初中数学是完全不同的两个概念,最大的区别就是,高中数学更加抽象了。读过高中的同学都清楚,像集合、映射等概念,十分难以理解,而且离生活很远, 不像小学和初中的数学那样“接地气”。还有,初中和高中的数学语言,也是有明显区别的。初中的数学,它是形象、通俗的。而高一数学,却变化了,它一下子就触及到了抽象的集合语言、逻辑运算语言、函数语言、空间立体几何等。对于刚刚升入高中的同学来说,显然很难以接受这种改变。那么,进入高中以后,同学们一定要注意到这种变化,要能接受并适应这种变化,如此,才能学好数学哦。

第2点:改变不好的学习习惯。

很多高一的学生,没有良好的学习习惯,比如,依靠心理很严重,不少同学,根本不愿意发散思维,他只凭借课堂上老师讲的内容,来完成练习题,殊不知,只会照猫画虎的话,根本不能深入到学习当中去。还有,一些同学进入高中了,却还把自己当成小学生,根本不愿意提前预习,或者参与到老师的提问当中,只愿意呆坐着等老师灌输,这样被动的学习,根本学不到真东西。

还有,一部分同学在进入高中后,思想上并没有做好准备,而是十分懒怠,觉得高一不用着急,高三时再用心苦读就可以了,其实呀,这种思想是完全错误的!高中阶段的数学这样难,只能一步一个脚印踏踏实实学,你丢弃了高一、高二的黄金时期,高三再苦读,也是赶不上去的!

第3点,要学会科学地分配学习时间,会用巧劲。

学习要得法才行,大部分学霸,是非常注重课堂听讲的,毕竟,老师们在上课之前,一定会提前备课,也会反复讲解本节课当中的重难点知识,此时,一定要积极跟着老师的思维走,不能想别的东西分散注意力,课堂上,老师所讲的概念呀法则呀公式呀定理呀,都是十分重要的,一定要吃透了,听进到头脑当中,切莫上课不听下课问,或者作业照抄了事,这都是对自己不负责任的表现!

还有,学习当中,一定要注重基础,数学是最重视基础知识的,由易到难,循序渐进,而且呢,学习当中,也不能只顾刷题,却不管算理。学习数学,要注意提升自己的深度和广度,一定要正确掌握数学分析方法,像是在学习函数值的求法,实根分布与参数变量的讨论,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等之时,高一学生一定要做好数学内容的衔接,还要及时地查漏补缺才行,切莫让知识点出现断痕!

综合以上几点,高一生在学习数学时,一定要方法得当,才能真正把数学这个拦路虎给解决了。试想一下,如果同学你能在高考当中数学考140分以上,是不是很给力呢?

读书破万卷下笔如有神,以上就是虎知道为大家带来的5篇《高一函数知识点总结》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。