幂函数知识点总结最新5篇
函数是高中数学中比较重要的一项知识,学好函数可以提高自己的数学知识水平。虎知道为朋友们整理了5篇《幂函数知识点总结》,希望能为您的思路提供一些参考。
幂函数知识点总结 篇一
1、幂函数解析式的右端是个幂的形式。幂的底数是自变量,指数是常数,可以为任何实数;与指数函数的`形式正好相反。
2、幂函数的图像和性质比较复杂,高考只要求掌握指数为1、2、3、-1、时幂函数的图像和性质。
3、了解其它幂函数的图像和性质,主要有:
①当自变量为正数时,幂函数的图像都在第一象限。指数为负数的幂函数都是过点(1,1)的减函数,以坐标轴为渐近线,指数越小越靠近
x轴。指数为正数的幂函数都是过原点和(1,1)的增函数;在 x=1的右侧指数越大越远离 x 轴。
②幂函数的定义域可以根据幂的意义去求出:要么是x≥0,要么是关于原点对称。前者只在第一象限有图像;后者一定具有奇偶性,利用对称性可以画出二或三象限的图像。注意第四象限绝对不会有图像。
③定义域关于原点对称的幂函数一定具有奇偶性。当指数是偶数或分子是偶数的分数时是偶函数;否则是奇函数。
4、幂函数奇偶性的一般规律:
⑴指数是偶数的幂函数是偶函数。
⑵指数是奇数的幂函数是奇函数。
⑶指数是分母为偶数的分数时,定义域 x>0或 x≥0,没有奇偶性。
⑷指数是分子为偶数的分数时,幂函数是偶函数。
⑸指数是分子分母为奇数的分数时,幂函数是奇数函数。
高一数学幂函数知识点总结 篇二
一、一次函数定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1、作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
高一数学幂函数知识点总结 篇三
一、高中数学函数的有关概念
1、高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数。记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域。
注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的函数。
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2、高中数学函数值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3、函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象。C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4、高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5、映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是唯一的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。
6、高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况。
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集。
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
高一数学幂函数知识点总结 篇四
1、函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数。区间D称为y=f(x)的单调减区间。
注意:函数的单调性是函数的局部性质;
(2)图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。
(3)函数单调区间与单调性的判定方法
(A)定义法:
a.任取x1,x2∈D,且x1
b.作差f(x1)-f(x2);
c.变形(通常是因式分解和配方);
d.定号(即判断差f(x1)-f(x2)的正负);
e.下结论(指出函数f(x)在给定的区间D上的单调性)。
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。
8、函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数。
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数。
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称。
利用定义判断函数奇偶性的步骤:
a.首先确定函数的定义域,并判断其是否关于原点对称;
b.确定f(-x)与f(x)的关系;
c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件。首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数。若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定。
9、函数的解析表达式
(1)。函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。
(2)求函数的解析式的主要方法有:
1)凑配法
2)待定系数法
3)换元法
4)消参法
10、函数最大(小)值(定义见课本p36页)
a.利用二次函数的性质(配方法)求函数的最大(小)值
b.利用图象求函数的最大(小)值
c.利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
幂函数知识点总结 篇五
掌握幂函数的内部规律及本质是学好幂函数的关键所在,下面是整理的幂函数公式大全,希望对广大朋友有所帮助。
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
读书破万卷下笔如有神,以上就是虎知道为大家整理的5篇《幂函数知识点总结》,能够帮助到您,是虎知道最开心的事情。
推荐文章:
- ·想要有面试,先看懂HR挑简历的思路
- ·班主任工作总结优秀6篇
- ·订单处理员的工作内容
- ·最新入党申请书格式模板通用10篇
- ·低门槛高薪的销售行业,你心动吗?
- ·电工实训总结(通用6篇)
- ·初三期中考试学生总结最新10篇
- ·中国青年志愿者服务日活动总结(精彩3篇)
- ·远程研修总结最新10篇
- ·婚假申请书(4篇)
- ·简单的个人原因辞职申请书怎么写【优秀10篇】
- ·民主评议党员会议记录内容通用4篇
- ·入党积极分子转预备党员申请书(优秀3篇)
- ·最新大学生入党申请书模板范文(优秀8篇)
- ·转正申请书范例最新8篇
- ·高一化学知识点总结3篇
- ·总结表彰会议主持词【最新9篇】
- ·二次投递简历会被拒吗?
- ·人力资源年度工作总结通用4篇
- ·物业保洁工作总结(优秀3篇)
- ·个人通用年终工作总结(优秀3篇)
- ·初中物理知识点总结【优秀8篇】
- ·物流客服职业发展方向是什么?该从何做起?
- ·这样汇报工作的大部分都升职了
- ·《第一朵杏花》教学设计8篇
- ·安全教育活动总结【优秀5篇】
- ·小学语文教师工作总结(最新9篇)
- ·课程学习总结【优秀10篇】
- ·教育实习总结最新8篇
- ·语文月考工作总结(通用10篇)